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Abstract. The problem of the stability threshold of thin-film dynamics as described by the Benney equation
of both first and second orders is revisited. The main result is that the primary Hopf bifurcation of the Benney
equation of first order is supercritical for smaller values of Reynolds number and subcritical for its larger values.
This result is numerically validated and further investigated analytically to reveal coexisting stable and unstable
traveling waves. However, the primary bifurcation of the second-order Benney equation is supercritical for any
Reynolds numbers. Sideband instability of traveling-wave regimes whose amplitude and frequency arise from the
corresponding complex Ginzburg-Landau equation (CGLE) is found for the Benney equation of both first and
second orders.
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1. Introduction

Falling liquid films are often encountered in various technological applications, such as evap-
orators, condensers, heat exchangers, coating, and physical phenomena, such as gravity cur-
rents and lava flows. The long-wave approach [1] has been found to be a useful tool of
investigation in the case when the base state is a flow and the Reynolds number of the flow is
not large. An example is the dynamics of a liquid film flow on a vertical or an inclined plane
where the steady Nusselt flow is known to be unstable to small long-wave disturbances. The
Nusselt flow undergoes a Hopf bifurcation which evolves to a variety of patterns, where the
final pattern selection depends on the flow parameters.

In the pioneering work on this topic, Benney [2] derived the nonlinear partial differential
evolution equation referred to nowadays as the Benney equation (BE). This evolution equation
describes the nonlinear dynamics of the interface of a two-dimensional liquid film flowing on a
fixed vertical or inclined plane. The Benney equation has been extensively studied over several
decades. Traveling-wave solutions were investigated using the method of projection onto a
low-dimensional manifold spanned over several modes [3–5]. More complex traveling-wave
structures for the Benney equation were also investigated [5]. These traveling-wave solutions
were found to be simple solitary and multi-humped localized waves. It was claimed [5] that
solitary wave patterns observed in [6] in their experiments represent just a superposition of
different solitary waves. Three-dimensional extensions of the Benney equation were derived
in [7] and [8]. Higher-order evolution equations, with respect to the small expansion parameter
that constitutes the aspect ratio of the wave, were derived in [4, 9]. The first-order Benney
equation was numerically investigated as a partial differential equation in [10–15].
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However, along with the success of the Benney equation model to describe the dynamics
of falling liquid films, there is a serious drawback. It turns out that there exists a subdomain
in parameter space, where the Benney equation exhibits solutions whose amplitude grows
without bound. In this case the Benney equation loses its physical relevance. The feature of
solutions blow-up for the Benney equation was first reported in [10] and further studied in
[13], where the valid range of the Benney equation was mapped in the appropriate parameter
space. Salamon et al. [16] carried out the study of traveling waves on vertical falling films
by solving directly the full stationary hydrodynamic equations along with the free-surface
boundary conditions using the finite elements method and compared the solutions with those
of the Benney equation written in the moving frame of reference. The latter demonstrated
coexisting traveling waves below the spurious blow-up. After extensive numerical simulations
of the BE, Oron and Gottlieb [14] conjectured that the larger traveling waves are unstable. Re-
cently, Gottlieb and Oron[17] demonstrated via a low-order modal projection, that the larger
amplitude traveling waves are indeed unstable and that the blow-up threshold represents a
saddle-node bifurcation.

The existence of the blow-up property of the Benney equation led to several attempts to
develop alternative approaches to the derivation of the pertinent evolution equations for the
same physical problem. Ooshida [18] conjectured that the traditional longwave expansion is
poorly convergent and suggested replacing it by a regularized longwave expansion based on
Padé approximations. He identified the important parameter δ = RW−1/3 referred to as the
rescaled Reynolds number. Its importance arises from the fact that in the drag-gravity domain
δ � 1 the inertia plays a perturbative role, while in the drag-inertia domain δ � 1 the inertia
is dominant. The blow-up of the BE solutions occurs in the drag-inertia domain[18]. Recently
alternative approaches that avoid the blow-up in the model equations have been introduced
[19–23]. These alternatives are refinements of the integral methods [6, 24].

Lin [25] carried out the bifurcation analysis of the first- and second-order Benney equations
and found (as follows from his expression given for J2 and in spite of the curve J2 = 0 drawn
in the incorrect location in Figure 1 there) that the primary bifurcation is always supercrit-
ical. He also found that the filtered wave satisfying the pertinent complex Ginzburg-Landau
equation is sideband stable. However, our results presented below disagree with his results in
several aspects. Nakaya [4] and later Chang [26] carried out the bifurcation analysis of the
third-order Benney equation. Their main result was that the type of the primary bifurcation of
the third-order BE is supercritical, similar to that of the second-order BE [25].

The plan of the paper is as follows: Section 2 is devoted to the basic properties of the
second-order Benney equation. In Section 3 we carry out the bifurcation analysis for the
primary instability and derive the complex Ginzburg-Landau equation (CGLE) for both first-
and second-order Benney equations. Section 4 deals with sideband instability of the mono-
chromatic waves satisfying the CGLE. Section 5 contains the results of numerical verification
of our bifurcation analysis. Section 6 is devoted to an analytical investigation of the properties
of the Benney equation based on its low-dimensional modal projection. Section 7 contains
discussion and closing remarks.

2. Preliminaries

We begin with the second-order Benney equation in the form given by Lin [25]

ht + A(h)hx + α[B(h)hx + C(h)hxxx]x + α2[D(h)h2
x + E(h)hxx + F(h)hxxxx
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+ G(h)hxhxxx + H(h)h2
xx + I (h)h2

xhxx]x + O(α3) = 0, (1a)

where

A(h) = 2h2, B(h) = 8R

15
h6, C(h) = 2

3
Sh3,

D(h) = 1016

315
R2h9 + 14

3
h3, E(h) = 32

63
R2h10 + 2h4, (1b)

F(h) = 40

63
RSh7, G(h) = 16

3
RSh6, H(h) = 16

5
RSh6, I (h) = 32

5
RSh5.

Here h = h(x, t) represents the nondimensional film thickness depending on the dimension-
less independent spatial and temporal variables x and t , respectively. Equation (1a) describes
the spatiotemporal dynamics of the two-dimensional liquid film of a mean thickness d falling
on a static vertical (cot β = 0) plate, when the physical properties of the liquid, such as density
ρ, kinematic viscosity ν, and surface tension σ are specified.

The system parameters include the fundamental gravity- and surface tension-related di-
mensionless parameters R, W , which are Reynolds and inverse capillary numbers, respect-
ively, and the small aspect-ratio parameter α

R = gd3

2ν2
, W = σ

ρgd2
, α = 2πd

λ
. (2)

The Reynolds and the rescaled inverse capillary numbers R and S = α2W [3], respectively,
are assumed in what follows to be O(1) as α → 0.

The space-time variables (x, t) represent the corresponding physical space-time variables
stretched by a small parameter α, defined in Equation (2) by the ratio between the average film
thickness d multiplied by 2π and the characteristic wavelength of the interfacial disturbances
λ. This wavelength is chosen as the entire length of the system so that solution domain for
Equation (1a) is 0 ≤ x ≤ 2π . In what follows the flow is considered in the entire domain of
(−∞,∞) with a 2π -periodicity.

The linearized version of Equation (1a) around its trivial solution h0 ≡ 1 reads in terms of
a small disturbance of the flat film interface u = h − 1

ut + A1ux + α(B1uxx + C1uxxxx) + α2(E1uxxx + F1uxxxxx) + O(α3) = 0, (3)

where from here on A1 = A(h = 1), B1 = B(h = 1), etc., A′
1 ≡ A′(h = 1), B ′

1 ≡ B ′(h =
1), C ′

1 ≡ C ′(h = 1), etc., A′′
1 ≡ A′′(h = 1), B ′′

1 ≡ B ′′(h = 1), C ′′
1 ≡ C ′′(h = 1), etc., and

primes denote differentiation with respect to h.
To order O(α2), Equation (3) has a traveling-wave (TW) solution with the fundamental

wavenumber k0 = 1 in the form

u(x, t) = 	 exp [i(x − ct)] + 	̄ exp [−i(x − c̄t)], (4)

where 	 is a complex amplitude of the wave independent of x, t , c is the complex wave
celerity given by

c = cr + ici, cr = A1 − α2(E1 − F1), ci = α(B1 − C1), (5)

and bars denote complex conjugates.
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Figure 1. The stability diagram computed for thin water films, as described by Equation (7). It represents a
different projection of the diagram found by Rosenau, Oron and Hyman [13]. The solid curve represents the linear
stability threshold of the system. The curve marked by circles corresponds to the boundary between the domains
of bounded and unbounded solutions for the BE1 computed numerically. The computations were not pursued for
α/2π < 0·002 due to numerical complications. The intersection of the dashed and solid lines (A) represents the
boundary between the supercritical and subcritical bifurcations located to its left and right, respectively. Thus, for
R < R(A) the bifurcation is supercritical, while for R > R(A) the bifurcation is subcritical.

The solution h = 1 of the BE in the periodic domain (0, 2π) is asymptotically stable
(unstable) if ci < 0 (ci > 0), which is equivalent to B1 < C1 (B1 > C1). The onset of
instability is oscillatory via a Hopf bifurcation. At the instability threshold of the system B1 =
C1 the parameters of the problem are linked by the relationship

α = αH ≡ (
4R

5W
)1/2. (6a)

Beyond the threshold, the film surface evolves as a stationary wave propagating downstream
with the speed cr . Equation (6a) can be rewritten as

α = αH ≡ (
25/6

√
5

)
R4/3

κ1/2
(6b)

in terms of the Kapitza number

κ = σ

ρν4/3g1/3
(6c)

that contains only the material properties of the liquid.
Figure 1(a) displays the stability diagram for a water film (ν = 1·12 × 10−2 cm2/s, ρ =

0·999 g/cm3 and σ = 73·49 dyn/cm [27]) in the (α − R) plane. The solid curve in Figure 1
represents the linear stability threshold of the system. The stability structure of the first-order
Benney equation (BE1)

ht + A(h)hx + α[B(h)hx + C(h)hxxx]x + O(α2) = 0 , 0 ≤ x ≤ 2π, (7)

was earlier investigated numerically in [13] and [14]. In accordance with the latters, the curve
of the linear stability threshold of the system along with the curve marked by circles divide the
plane into three regions: (I) linearly stable where small disturbances of the flat interface h = 1
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decay and h(t → ∞) = 1; (II) linearly unstable where the solutions of the BE1 are bounded
for all times; (III) linearly unstable where the solutions of the BE1 grow with no saturation.
These unbounded solutions are artifacts of the asymptotics related to long-wave expansions
carried out in order to derive the evolution equation. Such unbounded solutions of the BE1
were first discovered numerically in [10] and were later classified and discussed in [13] and
[14], who found the stability structure of the BE1 to include these three regions. Regions I and
II are separated by the curve given by the Hopf stability criterion, Equation (6a), while regions
II and III are separated by numerically obtained threshold for unbounded solutions [14].

3. Weakly nonlinear stability analysis of the Benney equation

Following as closely as possible the notation of Lin [25], we derive the Complex Ginzburg-
Landau equation arising from the Benney equation (1a). In the vicinity of criticality given by
ci = O(ε2) which is equivalent to

B1 − C1 = O(ε2) or S = 4

5
R + O(ε2), (8)

the critical wavenumber is k = 1, the slow independent variables are defined by

X = εx, T1 = εt, T2 = ε2t, (9)

where ε measures the distance from criticality, and the solution of (1a) is expanded in power
series of ε as

h(α, x, t,X, T1, T2) ≡ 1 + εη(α, x, t, X, T1, T2) = 1 + εη1 + ε2η2 + ε3η3 + · · · (10)

with ηj = ηj (α, x, t, X, T1, T2), j = 1, 2, 3 · · ·.
Substituting Equations (9),(10) in (1a) yields

(L0 + εL1 + ε2L2 + · · ·)(εη1 + ε2η2 + ε3η3 + · · ·) = nonlinear terms, (11)

where

L0 = ∂

∂t
+ A1

∂

∂x
+ α(B1

∂2

∂x2
+ C1

∂4

∂x4
) + α2(E1

∂3

∂x3
+ F1

∂5

∂x5
),

L1 = ∂

∂T1
+ ∂

∂X

[
A1 + 2α(B1

∂

∂x
+ 2C1

∂3

∂x3
) + α2(3E1

∂2

∂x2
+ 5F1

∂4

∂x4
)

]
, (12)

L2 = ∂

∂T2
+ ∂2

∂X2

[
α(B1 + 6C1

∂2

∂x2
) + α2(3E1

∂

∂x
+ 10F1

∂3

∂x3
)

]
.

At first order in ε one obtains from (1a)

L0η1 = 0, (13)

which yields

η1 = 	 exp [i(x − cr t)] + 	̄ exp [−i(x − cr t)], (14)

where the amplitude 	 = 	(X, T1, T2) is to be determined and cr is given by (5).
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At second order in ε one obtains from (1a) and (14)

L0η2 = −
(

∂

∂T1
+ H2

∂

∂X

)
	 exp [i(x − cr t)] + Q1	

2 exp [2i(x − cr t)] + c.c., (15)

where c.c. denotes complex conjugate,

H2 ≡ H2r + iH2i = A1 − α2(3E1 − 5F1) + 2iα(B1 − 2C1),

Q1 = −iA′
1 + 2[α(B ′

1 − C ′
1) + iα2(D1 + E′

1 − F ′
1 − G1 − H1)], (16)

which coincides with the results of Lin [25], see Equation (17) there. Consequently, the
function 	 has the functional form of 	 = 	(X − H2rT1, T2), provided that H2i = O(ε).

Upon elimination of secular terms from (15) the solution is obtained as

η2 = H̃1	
2 exp [2i(x − cr t)] + c.c., (17)

where

H̃1 ≡ H̃1r + iH̃1i = Q1

2α[2(4C1 − B1) + 3iα(5F1 − E1)] , (18)

which is different from what Lin obtained in his expression for H1.
Substituting (14) and (17) in the equation obtained at third order in ε and eliminating

its secular solution, we obtain using MATHEMATICA the following equation related to the
complex Ginzburg-Landau equation (CGLE) for the perturbation amplitude 	:

∂	

∂T2
+ iv

∂	

∂X
− c′

i	 + (J1r + iJ1i)
∂2	

∂X2
+ (J2 + iJ4)|	|2	 = 0, (19)

where

c′
i = ε−2ci, v = 2α(2C1 − B1)ε

−1 > 0, (20a)

J1r = α(B1 − 6C1), J1i = α2(3E1 − 10F1), (20b)

J2 = −A′
1H̃1i + α[1

2
(C ′′

1 − B ′′
1 ) + (7C ′

1 − B ′
1)H̃1r] + α2H̃1iZ, (20c)

J4 = A′
1H̃1r + 1

2
A′′

1 + αH̃1i(7C ′
1 − B ′

1)

+ α2[D′
1 − 3

2
(E′′

1 − F ′′
1 ) − G′

1 + 3H ′
1 − I ′

1 − ZH̃1r], (20d)

where

Z = −4D1 + 5E′
1 − 17F ′

1 + 10G1 − 8H1. (20e)

Equation (19) is similar in its form to (18) obtained in [25] but differs from it in several
aspects: (i) the coefficient of the diffusion term is not real as in [25], but has also an imaginary
component O(α2); (ii) the coefficients J2 and J4 now contain O(α2)-corrections consistently
with the presence of O(α2) terms in the second-order Benney equation; (iii) the wrong ex-
pression for H1 given in [25] is now corrected in (18) and the wrong factor ‘10’ that appears
in the coefficients J2 and J4 given in [25, Equation (18)] is now corrected to ‘7’ in (20) in
the appropriate places; (iv) Equation (19) now contains an imaginary, apparently ‘convective’
v-term missing in [25].
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It is instructive to note that Equation (19) can be reduced by transformation

	(X, T2) = exp (iqX)γ (X, T2), q = − v

2(J1r + iJ1i )
(21)

into the standard CGLE in the form

∂γ

∂T2
− [c′

i − v2

4(J1r + iJ1i )
]γ + (J1r + iJ1i)

∂2γ

∂X2
+ (J2 + iJ4)|γ |2γ = 0, (22)

where the coefficient of the linear, spatially homogeneous term now becomes complex.
The linear stability properties of the trivial solution 	 = 0 of (19) are now briefly outlined.

Linearizing (19) about 	 = 0 and introducing the normal perturbation in the form const
× exp (ωT2 + ikX) with complex growth rate ω and wavenumber k, both dimensionless, one
arrives at the dispersion relation

ω = c′
i + kv + (J1r + iJ1i)k

2. (23)

Therefore, the disturbance will grow in time rendering by this the state 	 = 0 to be linearly
unstable, if

Re(ω) = c′
i + kv + J1rk

2 > 0. (24)

This criterion is valid for longwave disturbances of

k < k0 ≡ 2c′
i√

v2 − 4J1rc
′
i − v

(25)

for c′
i > 0, and in the interval

k2 < k < k1, k2 = −2c′
i

v + √
v2 − 4J1rc

′
i

, k1 = −2c′
i

v − √
v2 − 4J1rc

′
i

(26)

for c′
i < 0.

The character of the perturbation dynamics beyond the linear regime depends solely on the
sign of J2. When J2 is positive, the saturation of the amplitude 	 is ensured. This is the case
of a supercritical (forward) bifurcation. When J2 is negative, the saturation does not occur
(if higher-order terms in 	 are not accounted for), and the corresponding case is that of a
subcritical (inverted) bifurcation.

3.1. BE1

In the case of the BE1 D(h) = E(h) = F(h) = G(h) = H(h) = I (h) = 0 (20) reduce to

c′
i = ε−2ci, v = 2α(2C1 − B1)ε

−1, (27a)

J1r = α(B1 − 6C1), J1i = 0, (27b)

J2 = −A′
1H̃1i + α[1

2
(C ′′

1 − B ′′
1 ) + (7C ′

1 − B ′
1)H̃1r], (27c)

J4 = A′
1H̃1r + 1

2
A′′

1 + αH̃1i(7C ′
1 − B ′

1), (27d)

where

H̃1 ≡ H̃1r + iH̃1i = −iA′
1 + 2α(B ′

1 − C ′
1)

4α(4C1 − B1)
. (27e)
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Substitution of the corresponding values of the variables in (27) yields

J1r = α(B1 − C1) = −8αR

3
, J2 = 5

2αR
− 12αR

5
, J4 = −1. (28)

In view of the fact that the first-order Benney equation is being considered, one may be
puzzled by the result obtained for J2, as given by (28), due to the emergence of powers of α

differing by two. However, the same result containing two terms of different signs is obtained
when the first-order equation, Equation (1a) with D(h) = E(h) = F(h) = G(h) = H(h) =
I (h) = 0 is transformed by

h → α−2/11h, x → α3/11x, t → α7/11t, (29)

into the equation devoid of parameter α

ht + 2h2hx + 8R

15
(h6hx)x + 2

3
S(h3hxxx)x = 0. (30)

The validity of this result will be numerically tested and verified in Section 5. Note that (30)
reveals that the boundary-value problem at hand is governed by two system parameters. Note
also that it is impossible to scale out the parameter α from the second-order Benney equation.

Therefore, the bifurcation as predicted by the first-order Benney equation is supercritical
(J2 > 0) if

R < Rc = 5

2
√

6α
. (31a)

For R > Rc

R > Rc = 5

2
√

6α
(31b)

the bifurcation is subcritical.
The dashed curve in Figure 1(a) given by (31) and corresponding to J2 = 0 intersects with

the Hopf curve given either by (6a) or by (6b) at the point A. Solving simultaneously (6a) with
J2 = 0 yields

R = Rc = 5

2 · 121/3
W 1/3 ≈ 1·092W 1/3, (32a)

which is suitable in the general case. However, if the liquid is specified and its Kapitza number,
Equation (6c), is prescribed, the appropriate expression for the critical value of the Reynolds
number Rc is found from solving simultaneously (6b) and J2 = 0

R = Rc = 59/11

210/11 · 33/11
κ3/11 ≈ 1·473κ3/11. (32b)

As follows from (31), the domain of supercritical bifurcation is located along the Hopf curve
for 0 < R < Rc = R(A), and is subcritical for R > R(A). This result will be verified both
numerically and theoretically in Sections 5 and 6, respectively. In the case of water films, for
instance, Rc ≈ 8·3894.

It should be noted here that the critical value of Rc from (31) is O(α−1), This is formally
outside the asymptotic range of R = O(1) for which the BE was systematically derived from
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the Navier-Stokes equations. However, it represents a characteristics of the BE1 and can be
verified in Figure 1 to be within the bounds of region II for a water film. Furthermore, this
relation between the subcritical threshold and the blow-up of BE1 is not guaranteed as the
transition between regions II and III is obtained numerically and we cannot rule out that the
subcritical domain will appear beyond the critical value of R of the region III. We address this
issue in Section 6.

Ooshida [18] found that the rescaled Reynolds number

δ = R

W 1/3
, (33)

that appeared as a single parameter in the integral boundary-value equations [24, 19, 20], is
very important because it naturally separates between two domains: the domain δ � 1 where
the inertia plays a perturbative role with respect to viscous effects (drag-gravity regime), and
the domain δ � 1 where inertia dominates the latter (drag-inertia regime). He also pointed
out that the transition point between the two regimes is close to δ = 1, and noted that beyond
this value the long-wave Benney equation is invalid. Thus, Equation (7) can be recast into a
single-fluid-parameter version in the form

ht + 2h2hx + 8

15
δµ(h6hx)x + 2

3
µ3(h3hxxx)x = 0, (34)

where µ = αW 1/3. Note that under the fundamental assumption S = α2W = O(1), see
Section 2, the revised perturbation parameter µ = αW 1/3 is O(α1/3). The film evolution
governed by (34) and the linear stability threshold of the system in a finite periodic domain
which can be written in similar to (6a) as

µ = µH =
(

4

5
δ

)1/2

,

depend on both δ and µ.
As seen in Figure 1(b) the transition between bounded and unbounded solutions of BE1

takes place in the range 0·6 < δ < 1·5. Furthermore, as seen from (32a) and from Figure 1(b),
the point A that represents a universal transition from supercritical to subcritical bifurcation,
δ = δc ≈ 1.092, lies in the same neighborhood, as the limiting range of BE1.

Equation (34) is the BE1 written in the form where a single fluid parameter δ appears
instead of two fluid parameters R, S in (7), along with a revised perturbation parameter µ.
Note that if the fluid is specified, the two parameters R and S in (7) depend only on the
mean film thickness d, thus effectively reducing the number of independent fluid parameters
to one. When comparing between (7) and (34) one should bear in mind that the perturbation
parameter, namely α = 2πd/λ and µ = αW 1/3, respectively, is not the same in both versions
of the BE1. However, Equation (34) implies that the film dynamics is universal for all fluids,
when analyzed in the δ − µ parameter space [28].

Except for work of Lin [25], Nakaya [4] and Chang [26] also carried out the bifurcation
analysis of the Benney equation of various orders. Nakaya [4] derived the expression for the
Landau coefficient (s3 + iω3 in his notation, see (45) there) in terms of the coefficients of the
Benney equation R,W , the angle of inclination and the small expansion parameter µ that is
equivalent to our coefficient α. The sign of s3 determines there the type of the bifurcation.
At the last stage of the derivation only the leading-order term with respect to µ proportional
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Figure 2. Variation of the coefficients J2 and J4 of Equation (19) with the Reynolds number R for various values
of α. The broken and solid curves correspond to the first- and second-order Benney equations, respectively: (a)
α = 0·1- curves 1, 2; α = 0·01- curves 3, 4; α = 0·001- curves 5, 6. (b) Curves 1, 2 and 3 correspond to
α = 0·1, 0·01 and 0·001, respectively.

to µ−1R−1 was retained in s3. His result then is similar (but not identical, probably due to
some algebraic errors in his derivations) to the first term in J2 given in (28). We checked his
result, taking into consideration the next term of the expansion of s3 into series of µ. The
conclusion is that he also would have obtained a term differing from the leading-order term
by its sign and proportional to µ, similar to (28). It follows, therefore, that Nakaya [4] could
have also obtained the transition from supercriticality to subcriticality similar to the results
presented in this paper. The derivations of Chang [26] are based on setting µ = 1 and on the
scaling where the existence of the originally second-order in µ terms (at least one of them
denoted there by B(h) and B0) is crucial, see his parameter ξ . The result with respect to the
type of bifurcation obtained by Chang [26] is consistent with that of Lin [25] and with our
own presented in the next subsection in the context of the second-order Benney equation. We
note here that [31, 32] found the same transition from supercritical to subcritical bifurcation
numerically using AUTO for stationary waves described by the BE1.

3.2. BE2

In the case of the second-order Benney equation (BE2) one obtains the following values for
the coefficients of Equation (19)

J1i = α2(6 − 32

9
R2), (35a)

J2 = 5

2αR
+ α(− 1125

128R3
− 955

168R
+ 3338R

2205
), (35b)

J4 = −121

21
+ 75

16R2
+ α2(

43511

1764
− 16875

1024R4
+ 2725

448R2
+ 19948R2

46305
), (35c)

where c′
i , v, J1r remain the same as in (27).

From inspection of Figure 2(a) displaying the variation of J2 with α,R one finds that the
curves corresponding to the BE2 bifurcate from those corresponding to the BE1 at a certain
value of R. Note that curve 5 also deviates from curve 6 at large R, where the BE loses its
validity. It follows from Figure 2(a) that J2, as given by (35) for the BE2 is positive, rendering
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its primary bifurcation supercritical. In this case our result agrees qualitatively with that of
Lin [25].

As seen from Figure 2(b), displaying the variation of J4 with α and R, the curves corres-
ponding to the BE2 intersect that of BE1. This follows from the O(1)-correction to the value
of J4 given by (27) that arises from the first and third terms of (20). The result signals that the
second-order BE does not represent a uniform extension of the first-order BE. This indicates
that the convergence of the asymptotic series leading to the Benney equations is questionable
as already suggested in [18]. In this context, if the second-order BE were an O(α2)- correction
of the first-order BE, an order-one correction for J4 would not arise. On the other hand, the
curves corresponding to the second-order BE and different values of α smoothly bifurcate
from each other at a certain value of R.

One can notice that both J2 and J4, as presented by (35) undergo a fast variation and change
their sign at R → 0, but in this domain the asymptotic expansions presented here will not be
valid, as R would not be O(1) there, but represented by some power of α.

4. Sideband instability of the spatially uniform solution of CGLE

In this section we investigate stability of the spatially uniform solution of Equation (19) with
respect to infinitesimal sideband disturbances. It is emphasized that spatially uniform solutions
of (19) correspond to traveling-wave (TW) regimes, as described by the Benney equation (1a).
The notation of Lin [25] will be followed as closely as possible. The following analysis is
carried out for both the supercritical, J2 > 0, c′

i > 0 and subcritical, J2 < 0, c′
i < 0 cases. We

reiterate here that according to the results of the previous section the bifurcation in the case of
BE2 is always supercritical, while in the case of BE1 it is supercritical for smaller values of
R and subcritical for larger values of R.

Seeking spatially uniform solutions of (19) in the exponential form 	∞(T2) = |	∞| exp
(−iQT2) results in

Q = c′
iJ4

J2
, |	∞|2 = c′

i

J2
. (36)

This solution is perturbed by small spatial sideband disturbances in the form

	 = 	∞(T2) + [δ	+(T2) exp (iKX) + δ	−(T2) exp (−iKX)] exp (−iQT2) (37)

with K being the modulation wave number and it is substituted in (19). Neglecting the terms
containing nonlinearities of δ	+, δ	− one obtains

∂

∂T2

(
δ	+¯δ	−

)
= A

(
δ	+¯δ	−

)
≡

(
A11 A12

A21 A22

) (
δ	+¯δ	−

)
, (38)

where

A11 = −2(J2 + iJ4)|	∞|2 + iQ + c′
i + (J1r + iJ1i)K

2 + Kv,

A22 = −2(J2 − iJ4)|	∞|2 − iQ + c′
i + (J1r − iJ1i)K

2 − Kv,

A12 = −(J2 + iJ4)|	∞|2, A21 = Ā12. (39)

Seeking solutions of (38) in the form(
δ	+¯δ	−

)
=

(
c+
c−

)
exp (λT2) (40)
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Figure 3. The largest real part of the eigenvalue λ1 of matrix A for water films. (a) The first-order Benney equation:
curves 1, 2 - d = 1·3×10−2 cm, α = 0·1245, K = 1 with v = 0 and 1, respectively; curves 3, 4 - d = 1·0×10−2

cm, α = 0·0645, K = 1 with v = 1 and 0, respectively. (b) The second-order Benney equation: curves 1, 2 -
d = 1·3 × 10−2 cm, α = 0·1244, K = 0·2 with v = 1 and 0, respectively; curves 3, 4 - d = 1·0 × 10−2 cm,
α = 0·0645, K = 1 with v = 1 and 0, respectively.

results in two eigenvalues being the complex growth rate of the disturbance. It is readily seen
that tr(A) = A11 +A22 is real and negative for c′

i > 0, therefore at least one of the eigenvalues
is in this case real and negative, which corresponds to the linearly sideband stable mode. The
other eigenvalue can, however, have either positive or negative real part depending on the
values of the problem parameters. In the former case the spatially uniform solution of CGLE
is sideband unstable.

Equation (38) yields in the particular case of J1i = 0, v = 0 considered in [25] two negative
eigenvalues λ1 = J1rK

2, λ2 = J1rK
2 − 2c′

i . This implies that the spatially uniform solution
of (19) is stable with respect to sideband disturbances for c′

i > 0 (the case considered there).
This result is valid, according to our derivations in the case of the first-order Benney equation,
as in this case J1i = 0, if v is formally smaller than O(ε), and thus neglected in (19).

In the particular case of v = 0, it is readily seen that A22 = Ā11, and therefore the
determinant of A is real and

det(A) = (K2J1r − 2c′
i )K

2J1r + (K2J1i − 2Q)K2J1i . (41)

The first-term of the right-hand side of (41) is always positive in the supercritical case c′
i > 0

and K �= 0, while the second one can be of either sign. The spatially uniform solution of (19)
given by (36) is thus sideband stable if detA > 0 and sideband unstable otherwise.

In the case of BE2 J1i �= 0 in general. Thus, sideband instability of the basic TW corres-
ponding to (36) may emerge. Indeed the condition for the latter, detA < 0 implies

K2 ≤ K2
sb ≡ 2c′

i

|J1|2 (J1r + J4J1i

J2
). (42)

It follows from (42) that in the supercritical case with v = o(ε) sideband instability emerges
when J1r + J4J1i/J2 > 0, is a longwave one. The latter is the well-known condition for
Benjamin-Feir instability [29, 30].

In the presence of the v-term in (19) the analysis seems to be less obvious and thus relies
on direct computation of the eigenvalues of A. It is found that the spatially uniform solution



Benney equation 133

of (19) given by (36) can become sideband unstable, even when perturbed with sideband
disturbance of the same wavenumber K = 1. Figure 3a shows the largest real part of the
eigenvalue that can change its sign (recall that the other one is always real and negative) in
the case of BE1. Our computations are carried out for water films in both supercritical, e.g.
d = 1·0 × 10−2 cm, and subcritical, e.g. d = 1·3 × 10−2 cm, domains (see Section 5), so
that in both of them c′

i/J2 > 0. The values of α were chosen to be adjacent to the respective
values of the linear stability threshold αH : α < αH in the supercritical case and α > αH in the
subcritical one. In both cases one reveals that in agreement with the analysis given above, the
basic TW is sideband stable for v = 0. It becomes, however, sideband unstable, as displayed
in Figure 3a, when v = 1 for |c′

i | exceeding a certain positive value in the subcritical case,
and for all 0 < c′

i < 1 in the supercritical one. Our numerical study shows that in general the
range of c′

i corresponding to sideband instability of the basic TW expands, when the value of
v increases from 0 to 1 with the disturbance wavenumber K remaining fixed, and when the
wavelength of the disturbance increases when v is fixed.

In the case of BE2 only a supercritical bifurcation is possible (see Section 3), thus the
domain of c′

i > 0 only is shown in Figure 3b. Again, the values of α are chosen to be next
to αH , this time only α < αH , as the bifurcation is supercritical. In the case of BE2 the
basic TW is found to be sideband stable for d < 1·3 × 10−2 cm with v = 0 in the range of
0·001 ≤ K ≤ 1 and sideband unstable for d ≥ 1·3 × 10−2 cm with v = 0 for appropriate
values of c′

i . Sideband instability is also found for v �= 0. A similar trend of variation of the
sideband unstable range of c′

i is found for BE2, as for BE1.

5. Numerical investigation of the first-order Benney equation

In order to carry out a validation of our results obtained in Section 3 for the weakly nonlinear
dynamics of water films, as described by the first-order Benney equation, we use the relation-
ship between d and α at the stability threshold obtained from (6a), and (31a), (31b). These
yield that for d < dc the primary bifurcation is supercritical, while for d > dc it is subcritical,
where

dc =
(

5
√

5

2
√

3
· ν3σ 1/2

g2ρ1/2

)2/11

. (43)

The value of dc given by (43) corresponds to δ = δc ≈ 1·092. Upon introduction of the
physical properties of water into (43) we find that dc = 1·28976 × 10−2 cm.

Equation (7) is numerically solved along with periodic boundary conditions in the domain
0 ≤ x ≤ 2π and the coefficients B(h), C(h) calculated for water films of varying thicknesses
d ranging around the critical value of dc given by (43). The results of such computations were
recently presented in [14]. Both regimes of traveling stationary and nonstationary waves were
found. Here we are concerned with numerical validation of our asymptotic analysis in the case
of the primary bifurcation of BE1.

Figure 4 displays the variation of the wave amplitude represented by the normalized peak-
to-peak size of the wave

ζ = hmax − hmin

hmax + hmin
(44)
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Figure 4. Variation of the wave amplitude, as computed from Equation (7) and expressed in terms of the parameter
ζ , (44), with the distance from criticality, as expressed in terms of the parameter E, (45), for various values of the
thickness of the water film: d = 1·1 × 10−2cm (δ = 0·609) denoted by squares, d = 1·28 × 10−2cm (δ = 1·062)
denoted by stars, d = 1·292 × 10−2cm (δ = 1·099) denoted by triangles, and d = 1·3 × 10−2cm (δ = 1·124)
denoted by circles. The dashed lines are drawn to guide the reader’s eye. The vertical dotted line corresponds to
the linear stability threshold, E = 0. The branch of the curve corresponding to d = 1·3 × 10−2cm (δ = 1·124)
that extends into the domain of negative E shows subcritical type of bifurcation in support of our theoretical
predictions.

with the aspect ratio α, as presented in terms of the measure of the distance from criticality

E = αH − α

αH

, (45)

where αH is the critical value of α at the Hopf-stability threshold for the specified film
thickness d.

Consistently with our theoretical predictions made in Section 3, the wave amplitude ex-
pressed by ζ tends to a nonzero value of ζ ≈ 0·259 when α → αH in the case of d =
1·3 × 10−2cm (δ = 1·124). The branch of this curve that extends into the domain of negative
E corresponding to α > αH , which constitutes the linearly stable domain. This fact provides
the numerical evidence of the subcritical solution and verification of the theoretical results,
(31a),(31b). Furthermore, the results corresponding to d = 1·1 × 10−2cm (δ = 0·609) are
consistent with the predicted supercritical character of the primary bifurcation and the value
of ζ decreases to zero with decreasing E (ζ → 0 as α → αH ). The curve corresponding
to d = 1·28 × 10−2cm (δ = 1·062) represents a supercritical case according to (31a) and
bends down in the vicinity of E = 0, as if it were pointing to the reference point of the
graph. However, we note that one cannot numerically resolve the question whether it actually
reaches the reference point. Thus, in order to further investigate the subcritical domain and
its characteristics, we investigate a two-mode dynamical system. We note that the subcritical
domain (located above the Hopf curve for R > R(A)) is particularly difficult to determine as
numerical continuation methods are costly.
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6. Stability analysis of a truncated bimodal dynamical system

In a recent paper Gottlieb and Oron [17] demonstrated the validity of a finite, low-order modal
expansion with respect to the numerically solved BE1. Furthermore, a two-mode model was
found to coincide with the numerical solution along the Hopf curve separating regions I and
II.

Consider a solution of (7) in a truncated Fourier series

h(x, t) = 1 +
N∑

n=1

[zn(t) exp (inx) + z̄n(t) exp (−inx)], (46)

where z̄n denotes the complex conjugate of zn. Substitution of (46) into (7) and truncation to
N = 2 yields

ż1 = [µ111z1 + µ121z̄1z2 + z1(µ131|z1|2 + µ132|z2|2)],
ż2 = [µ211z2 + µ221z

2
1 + z2(µ231|z1|2 + µ232|z2|2)], (47)

where the coefficients µkji are given by

µ111 = α(B1 − C1) − 2i, µ211 = α(4B1 − 16C1) − 4i,

µ121 = α(6B1 − 21C1) − 4i, µ221 = α(12B1 − 6C1) − 4i,

µ131 = α(15B1 − 3C1) − 2i, µ231 = α(120B1 − 96C1) − 8i,

µ132 = α(30B1 − 6C1) − 4i, µ232 = α(60B1 − 48C1) − 4i. (48)

The dynamical system (47) can be conveniently put in polar notation using zn = an exp (iθn),
and then be further reduced employing the phase relationship φ = 2θ1 − θ2

ȧ1 = β111a1 + (β121 cos φ − 4 sin φ)a1a2 + a1(β131a
2
1 + β132a

2
2), (49a)

ȧ2 = β211a2 + (β221 cos φ + 4 sin φ)a2
1 + a2(β231a

2
1 + β232a

2
2), (49b)

φ̇ = (−2β121 sin φ − 8 cos φ)a2 + (−β221 sin φ + 4 cos φ)
a2

1

a2
− 4(a2

2 − a2
1), (49c)

where βnji = Re(µnji).
Traveling waves of the modal system (47) correspond to fixed points of the reduced polar

equations (49) with a constant, nonzero phase difference (ȧ1 = ȧ2 = φ̇ = 0). Close to
the Hopf bifurcation we assume that the modal amplitudes are both small and ordered as
a1 → εa1, a2 → ε2a2. Consequently, the phase evolution is governed by the second term in
the right-hand side of (49c).

Thus the phase component of the fixed point (φ∗) is given by

tan φ∗ = 4

β221
= const + O(ε2). (50)

Substitution of φ∗ from (50) in (49a) results in an explicit expression for a2
1

β131a
2
1 = −(β111 + κ1a2) (51)

and a quadratic equation in terms of a2 from (49b).

κ1β231a
2
2 + (β111β231 − β131β211 + κ1κ2)a2 + β111κ2 = 0, (52)
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Figure 5. Variation of the wave amplitude, as expressed in terms of the parameter ζ , (44) with the distance from
criticality, as expressed in terms of the parameter E, (45), for various values of the thickness of the water film, as
computed using Equation (59). The solid curves correspond to stable solutions, while the dashed curves correspond
to the unstable ones. Curve 1: d = 1·1 × 10−2cm (δ = 0·609); 2: d = 1·28 × 10−2cm (δ = 1·062); 3:
d = 1·3 × 10−2cm (δ = 1·124); 4: d = 1·32 × 10−2cm (δ = 1·189); 5: d = 1·3275 × 10−2cm (δ = 1·214).

where

κ1 = β121 cos φ∗ − 4 sin φ∗, κ2 = β221 cos φ∗ + 4 sin φ∗. (53)

Recall that the Hopf bifurcation at the stability threshold is defined by B1 = C1 which is
β111 = 0. Consequently, the amplitude of the nonzero traveling wave is given by

a2 = β131β211 − κ1κ2

β231κ1
. (54)

Note that a zero amplitude in (54) corresponds to the threshold for the subcritical TW. Thus,
using

β131β211 = β121β221 − 16. (55)

and substituting of βnji in the zero value of a2, as obtained from (54) yields

R = 5

2
√

6α
, (56)

which is identical to the criterion (31a) and (31b) derived above.
Figure 5 describes the variation of the normalized amplitude ζ , Equation (44), given for

the bimodal system by

ζ = 2
√

a2
1 + a2

2, (57)

as a function of the normalized distance from criticality E, Equation (45).
Recall that a critical value of water film thickness is dc = 1·28976 × 10−2 cm (δ = 1·092).

Note that for thickness below dc, the normalized amplitude monotonically decreases to zero, as
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Figure 6. The subcritical stability diagram computed for thin water films, as described by (7). The solid line and
the curve marked by circles are the same as in Figure 1, respectively. The curve marked by black diamonds and
connecting points A and B, determines along with point C, the subcritical domain of coexisting traveling waves of
Figure 5.

predicted by the supercritical character of the bifurcation. This is depicted by curves 1 and 2 in
Figure 5 which are identical to the numerically obtained curves in Figure 4 for d = 1·1×10−2

(δ = 0·609) and 1·28 × 10−2 cm (δ = 1·062), respectively. However, for values above dc the
solution decreases monotonically to the value given by (54). This is depicted by curves 3, 4,
and 5 in Figure 5 corresponding to d = 1·3, 1·32, 1·3275×10−2cm (δ = 1·124, 1·189, 1·214),
respectively. We note that the solution of (52) with (50), (51) yields the predicted coexisting
subcritical traveling wave solutions in region I for E < 0 (α > αH). A comparison between
curve 3 for d = 1·3 × 10−2cm (δ = 1·124) and its numerical counterpart in Figure 4, reveals
a slight discrepancy for a wave height greater than ζ ≈ 0·3. The numerically obtained wave
is slightly higher than that of the two-mode approximation (≈ 8% for E ≈ 0·0125).

The domain of existence of the subcritical traveling waves is delineated by the zero value
of the discriminant of (52)

(β111β231 − β131β211 + κ1κ2)
2 − 4β111β231κ1κ2 = 0. (58)

The solution of (58) is depicted by the curve connecting A and B in Figure 6. We note that
beyond R > R(B), no subcritical solution was found.

Stability of the subcritical TW is determined via the cubic eigenfunction deduced from the
Jacobian of (49) calculated at the corresponding fixed points

J =
( 2β131a

2
1 κ1a1 −a1a2(β121 + β221) sin φ

2a1(κ2 + β231a2) β211 + β231a
2
1 0

8a1 −2(β121 + β221) sin φ −κ2a
2
1a

−1
2 − 2κ1a2

)
. (59)

The lower of the two TW yields a positive real eigenvalue corresponding to unstable
saddle-foci denoted by dashed curves in Figure 5, whereas the upper TW have negative real
parts and are stable sinks. Consequently, as anticipated, the bifurcation points defined by the
zero discriminant are saddle- nodes.

Finally, we note that the closed subcritical domain in Figure 6 defined by points ABC
may deform, because point B is deduced from a two-mode truncation which has been shown
to be accurate near the Hopf transition but yields slightly lower values than those obtained
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numerically from BE1 presented in Figure 4. Furthermore, we note that [31, 32] found a
similar subcritical domain of TW in their investigation of traveling waves of BE1 using AUTO
software for water films. However, while our numerically obtained curve denoted by circles
in Figure 6, tends to the linear stability threshold curve from below, their curve for blow-up
intersects the Hopf curve at R ≈ 8·9, and connects directly to their point B in region I.

7. Discussion and closing remarks

In this paper we have carried out the bifurcation analysis of the first- and second-order Benney
equations. The main result of this analysis shows that the primary bifurcation of the first-order
Benney equation is supercritical, when the Reynolds number is below a certain critical value,
and is subcritical, when the Reynolds number exceeds the latter. However, the second-order
Benney equation exhibits only a supercritical bifurcation.

The subcritical structure of BE1 was verified numerically and further investigated analyt-
ically by a two-mode dynamical system. This truncation accurately describes solutions near
the transition from regions I and II and yields the exact transition to subcriticality. Further-
more, the analysis of Section 6 enables determination of a closed subdomain (within region
I) describing coexisting TW predicted by the subcritical Hopf bifurcation. The upper/lower
waves were found to be stable/unstable, respectively, and their transition to be defined by a
saddle-node bifurcation.

The second-order Benney equation does not exhibit the subcritical bifurcation. This result
may be an expression of a fact that was already attributed to the Benney equation in [18]:
the asymptotic expansions leading to the derivation of the Benney equation may be poorly
converging. A manifestation of the poor convergence of the asymptotic expansion scheme in
the case at hand follows from the CGLE which has been derived in this paper. If the asymptotic
procedure were converging at this stage, the coefficients of the CGLE would be expected to
slightly change, as a result of going from the first-order to the second-order Benney equation.
However, as shown here, the coefficients J2 and especially J4 significantly change between
the subsequent orders of the Benney equation.

Sideband stability of the basic monochromatic traveling waves (TW) arising as the solu-
tions of the CGLE has also been investigated in this paper. In contrast with the results obtained
in [25] who claimed that these TW are sideband stable, we find that they may be sideband un-
stable depending primarily on the wavelength of a sideband disturbance and on the value of the
coefficient of the ‘convective’ term in the corresponding CGLE, (19). This sideband instability
can emerge in both supercritical and subcritical domains. Although we have not numerically
solved both CGLE, (19), or BE2, we conjecture on the outcome of this sideband instability
of the TW given by (36). As both blow-up of the corresponding TW and the emergence of
a non-stationary wave in the close proximity to the linear stability threshold appear unlikely,
the possibility of the emergence of a TW with a different amplitude, wavelength and celerity
than in (36), may be a preferred option.
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